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Abstract
We consider quasinormal modes with complex energies from the point of view
of the theory of quasi-exactly solvable (QES) models. We demonstrate that
it is possible to find new potentials which admit exactly solvable or QES
quasinormal modes by suitable complexification of parameters defining the
QES potentials. Particularly, we obtain one QES and four exactly solvable
potentials out of the five one-dimensional QES systems based on the sl(2)

algebra.

PACS numbers: 03.65.−w, 03.65.Nk, 03.65.Fd, 04.70.−s

1. Introduction

Quasinormal modes (QNM) arise as perturbations of stellar or black hole spacetimes [1].
They are solutions of the perturbation equations that are outgoing to spatial infinity and the
event horizon. This ‘outgoing wave boundary condition’ was first adopted by Gamow in his
explanation of the α-decay of atoms as a quantum tunnelling process [2]. Generally, these
conditions lead to a set of discrete complex eigenfrequencies, with the real part representing
the actual frequency of oscillation and the imaginary part representing the damping. QNM
carry information of black holes and neutron stars, and thus are of importance to gravitational-
wave astronomy. In fact, these oscillations, produced mainly during the formation phase of
the compact stellar objects, can be strong enough to be detected by several large gravitational
wave detectors under construction. Recently, QNM of particles with different spins in black
hole spacetimes have also received much attention [3].

Owing to the intrinsic complexity in solving the perturbation equations in general relativity
with the appropriate boundary conditions, one has to resort to various approximation methods,
e.g., the WKB method, the phase-integral method etc, in obtaining QNM solutions. It is
therefore helpful that one can get some insights from exact solutions in simple models, such
as the inverted harmonic oscillator [4, 5] and the Pöschl–Teller potential [6]. Unfortunately,
the number of exactly solvable models is rather limited.
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Recently, in non-relativistic quantum mechanics a new class of potentials which are
intermediate to exactly solvable ones and non-solvable ones has been found. These are called
quasi-exactly solvable (QES) problems for which it is possible to determine analytically a part
of the spectrum but not the whole spectrum [7–12]. The discovery of this class of spectral
problems has greatly enlarged the number of physical systems which we can study analytically.
In the last few years, QES theory has also been extended to the Pauli and Dirac equations [13].

In this paper we would like to study solutions of QNM based on the Lie-algebraic approach
of QES theory. We demonstrate that, by suitable complexification of some parameters of the
generators of the sl(2) algebra while keeping the Hamiltonian Hermitian, we can indeed obtain
potentials admitting exact or quasi-exact QNMs. Such consideration has not been attempted
before in studies of QES theory. Our work represents a direct opposite of the work in [14],
where QES real energies were obtained from a non-Hermitian PT -symmetric Hamiltonian.

2. QES theory

Let us briefly review the essence of the Lie-algebraic approach [7–9] to QES models1. Consider
a Schrödinger equation Hψ = Eψ with Hamiltonian H = −d2

x + V (x) (dx ≡ d/dx) and
wavefunction ψ(x). Here x belongs either to the interval (−∞,∞) or [0,∞). Now suppose
we make an ‘imaginary gauge transformation’ on the function ψ : ψ(x) = χ(x) e−g(x), where
g(x) is called the gauge function. For physical systems which we are interested in, the
phase factor exp(−g(x)) is responsible for the asymptotic behaviour of the wavefunction
so as to ensure normalizability. The function χ(x) satisfies a Schrödinger equation with a
gauge transformed Hamiltonian Hg = egH e−g . Suppose Hg can be written as a quadratic
combination of the generators J a of some Lie algebra with a finite dimensional representation.
Within this finite dimensional Hilbert space the Hamiltonian Hg can be diagonalized, and
therefore a finite number of eigenstates are solvable. Then the system described by H is
QES. For one-dimensional QES systems the most general Lie algebra is sl(2), and Hg can be
expressed as

Hg =
∑

CabJ
aJ b +

∑
CaJ

a + real constant, (1)

where Cab, Ca are taken to be real constants in [8, 9]. The generators J a of the sl(2) Lie algebra
take the differential forms: J + = z2dz − nz, J 0 = zdz − n/2, J− = dz (n = 0, 1, 2, . . .).
The variables x and z are related by some function to be described later. n is the degree of the
eigenfunctions χ , which are polynomials in a (n + 1)-dimensional Hilbert space with the basis
〈1, z, z2, . . . , zn〉.

Substituting the differential forms of J a into equation (1), one sees that every QES
operator Hg can be written in the canonical form: Hg = −P4(z)d

2
z + P3(z)dz + P2(z), where

Pk(z) are the kth degree polynomial in z with real coefficients related to the constants Cab and
Ca . The relation between Hg and the standard Schrödinger operator H fixes the required form
of the gauge function g and the transformation between the variables x and z. Particularly,
x = ∫ z dy/

√
P4(y). Analysis on the inequivalent forms of real quartic polynomials P4

thus gives a classification of all sl(2)-based QES Hamiltonians [8, 9]. If one imposes the
requirement of non-periodic potentials, then there are only five inequivalent classes, which
are called cases 1 to 5 in [9].

Our main observation is this. If some of the coefficients in Pk(z) are allowed to be
complex while keeping V (x) real, then all the five cases classified in [9] can indeed support
QES/exact quasinormal modes. We shall discuss these cases below.

1 See [10] for the analytic approach, [11] on classification of one-dimensional QES operators possessing finite-
dimensional invariant subspace with a basis of monomials, and [12] on formulation extending to nonlinear operators.
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3. QES QNM

We consider case 3 in [9], which corresponds to class I potential in Turbiner’s scheme [8].
There are two subclasses in this case, namely, case (3a) and case (3b). We shall present the
analysis of QNM potential for case (3a). The other case turns out to give the same potential
with a suitable choice of the parameters. The potential in case (3a) has the form (in this paper
we adopt the notation of [9])

V (x) = A e2
√

νx + B e
√

νx + C e−√
νx + D e−2

√
νx, (2)

where x ∈ (−∞,∞) and ν is a positive scale factor. Note that V (x) is defined up to a real
constant, which we omit for simplicity, as it merely shifts the real part of the energy. This
remark also applies to the other cases. V (x) in equation (2) reduces to the exactly solvable
Morse potentials when A = B = 0, or C = D = 0. This potential is QES when the
coefficients are related by

A = b̂2

4ν
, B = ĉ + (n + 1)ν

2ν
b̂,

C = ĉ − (n + 1)ν

2ν
d̂, D = d̂2

4ν
,

n = 0, 1, 2 . . . .

(3)

Here b̂, ĉ, d̂ are arbitrary real constants. For each integer n � 0, there are n+1 exactly solvable
eigenfunctions in the (n + 1)-dimensional QES subspace:

ψn(x) = exp

[
b̂

2ν
e
√

νx +
ĉ − nν

2
√

ν
x − d̂

2ν
e−√

νx

]
χn(e

√
νx). (4)

Here χn(z) is a polynomial of degree n in z = exp(
√

νx). To guarantee the normalizability of
the eigenfunctions, the real constants b̂, ĉ, d̂, ν and n must satisfy certain relations [9].

We want to see if we can get QNM solutions if we allow some parameters to be complex,
while still keeping the potential V (x) real. This latter requirement restricts the possible values
of the parameters, and hence the forms of QES potential admitting quasinormal modes. For
the case at hand, we find that one possible choice of values of b̂, ĉ and d̂ is

b̂ = ib, ĉ = −(n + 1)ν, d̂ = d, b, d : real constants. (5)

The potential equation (2) becomes

Vn(x) = − b2

4ν
e2

√
νx − (n + 1) d e−√

νx +
d2

4ν
e−2

√
νx, (6)

and the wavefunction equation (4) becomes

ψn(x) = exp

[
ib

2ν
e
√

νx −
(

n +
1

2

) √
νx − d

2ν
e−√

νx

]
χn(e

√
νx). (7)

V (x) approaches ∓∞ as x → ±∞, respectively: it is unbounded from below on the right.
For small positive d and sufficiently large n, V (x) can have a local minimum and a local
maximum. In this case, the well gets shallower as d increases at fixed value of n, or as n
decreases at fixed d. Figure 1 presents a schematic sketch of V (x) with b = 1 and n = 1.
We emphasize here that for the different value of n, each V (x) represents a different QES
potential admitting n + 1 QES solutions. Since V (x) → ∞ as x → −∞, the wavefunction
must vanish in this limit. This means d > 0 from equation (7). For the outgoing boundary
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Figure 1. Schematic sketch of the potential V (x) in equation (6) and the real parts of the
corresponding QNMs with b = 1 and n = 1.

condition, we must take b > 0. Before we go on, we note here that there is another possible
choice of the parameters, namely,

b̂ = −b, ĉ = (n + 1)ν, d̂ = id, b, d : real constants. (8)

However, this choice leads to a potential related to equation (6) by the reflection x 	→ −x.
Hence, we will only discuss the potential in equation (6) here.

To see that the wavefunctions ψn(x) do represent quasinormal modes, we determine
the corresponding energy En. This is easily done by solving the eigenvalue problem of the
polynomial part χn(z) of the wavefunction. From the Schrödinger equation we find that for
n = 0, the energy is E0 = −ν/4−ibd/2ν. This clearly shows that the only QES solution when
n = 0 is a QNM with an energy having a negative imaginary part (recall that b, d, ν > 0). For
n = 1, we have two QES solutions. Their energies are E1 = −5ν/4 − ibd/2ν ± √

ν2 − ibd .
Again we have two QNM modes. One can proceed accordingly to obtain n + 1 QNM modes
with higher values of n. However, for large n, computation becomes tedious, and one has
to resort to numerical means. For definiteness, we list in table 1 some values of En for
the case where b = d = ν = 1. In this case, the potential has a local minimum and a
local maximum, with the barrier height rises as n increases. For large n, some states (in
parentheses) have their real parts of energy lie below the local maximum of the barrier. Such
states are conventionally called the metastable states. We see from the table that the number of
metastable states contained within the well increases as n becomes larger. This is reasonable
as the well becomes deeper as n increases.

We have also used the WKB method to determine possible metastable states that can be
trapped by the well. The method is as follows. Let the three turning points, from the left to
the right, be designated as x1, x2 and x3, as shown in figure 1. The boundary conditions of
QNM then leads to the following quantization condition for the energy E:

e2iβ = 1 + 4 e2γ

1 − 4 e2γ
, (9)

where β ≡ ∫ x2

x1
dx

√
E − V (x) and γ ≡ ∫ x3

x2
dx

√
V (x) − E.

To the first approximation, we set e−2γ ≈ 0 and E ≈ Re(E). This gives the quantization
condition of Re(E): β = (l + 1/2)π, l = 0, 1, 2 . . .. Then by keeping the imaginary part of E
in β, but dropping it in γ , we can obtain an estimate of Im(E):

Im(E) = −exp
(−2

∫ x3

x2
dx

√
V (x) − Re(E)

)
2
∫ x2

x1
dx/

√
Re(E) − V (x)

. (10)
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Table 1. Values of QNM energy En for the QES potentials in case 3 with parameters
b = d = ν = 1. Note that for each n, there are n + 1 values of En. Energy levels of metastable
states are in parentheses. WKB estimates of energy of metastable states are also listed.

n En (QES) En (WKB)

0 −0.25 − 0.5i –
1 (−2.349 − 0.0449i) −2.313 − 0.0588i

−0.151 − 0.955i –

2 (−6.271 − 0.000 140i) −6.267 − 0.000 147i
(−2.447 − 0.135i) −2.439 − 0.156i
−0.0317 − 1.365i –

3 (−12.258 − 4.786 × 10−8i) −12.257 − 4.813 × 10−8i
(−6.293 − 0.000 817i) −6.284 − 0.000 902i
−2.542 − 0.259i –
0.0939 − 1.740i –

4 (−20.255 − 4.310 × 10−12i) −20.254 − 4.328 × 10−12i
(−12.265 − 3.810 × 10−7i) −12.263 − 4.010 × 10−7i
(−6.323 − 0.002 742i) −6.306 − 0.003 11i
−2.628 − 0.406i –
0.220 − 2.091i –

In table 1 we have also listed the WKB results for the metastable states. It is interesting to
note that all the metastable states obtained by WKB methods are in fact the QES states in the
cases we considered. The exact values of the QES energies and those of WKB calculations
are seen to be consistent.

4. Oscillator-like potentials

We now turn to the other four cases. These four cases admit exact QNM solutions. Here we
shall discuss cases 4 and 5 of [9], which are associated with oscillator potentials.

For case 4, the potential is given by

V (x) = Ax6 + Bx4 + Cx2 +
D

x2
, x ∈ [0,∞). (11)

It is QES if the coefficients are related by

A = b̂2

256
, B = b̂ĉ

32
,

C = 1

16
[ĉ2 + (2d̂ + 3(n + 1))b̂],

D =
(
d̂ − n

2

) (
d̂ − n

2
− 1

)
, n = 0, 1, . . . ,

(12)

with real constants b̂, ĉ and d̂. As before, we now relax the reality constraint on the parameters
but keeping V (x) real, and determine if QNMs can be supported in this case. It turns out that
the answer is positive if we let b̂ = 0, ĉ = 4ia, and d̂ = d, with real a and d. This leads to the
potential

V (x) = −a2x2 +
γ (γ − 1)

x2
. (13)

Here γ ≡ d − n
2 is arbitrary. Classes VII and VIII in [8] also lead to this potential when some

parameters are allowed to be complex. Equation (13) is independent of n, and hence one can
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solve for solvable states with any degree n in its polynomial part. This system is therefore
exactly solvable. For γ > 1 and γ < 0, V (x) is a monotonic decreasing function on the
positive half-line. If 0 < γ < 1, V (x) → −∞ at x = 0,∞, and has a global maximum in
between.

The wavefunctions take the form ψn = xγ eiax2/2χn(x
2), where χn(x

2) is an nth degree
polynomial in z ≡ x2. In order that the wavefunction satisfies the outgoing wave condition
and vanishes at the origin, we must have a > 0, γ > 0. Inserting ψn(x) into the Schrödinger
equation, we determine the energies to be En = −i(4n + 2γ + 1)a. Since a and γ are positive,
En is always negative, indicating decaying QNMs.

Cases 3 and 4 illustrate the main steps in complexifying the relevant parameters to obtain
QES/exact QNMs. It is satisfying to find that the remaining three cases can also be extended
to give potentials which also admit exact QNMs. These cases will be treated briefly below.

For case 5, we find that the only viable choice of potential is V (x) = −(cx + d)2 + d2/4,
where c and d are real constants. This is a shifted inverted oscillator. Just as in case 4, here
V (x) is also independent of n, and hence also exactly solvable. We mention that class VI in
[8] also leads to this potential with an appropriate choice of parameters.

For simplicity, we briefly discuss the case with d = 0: V (x) = −c2x2/4 [4]. QNM
solutions in such inverted oscillator have been discussed in [5] using the modified annihilation
and creation operators. Here we consider the problem from the point of QES potential. The
wavefunction is given by ψn(x) = exp(icx2/4)χn(x). From the Schrödinger equation, we get
the energies En = −ic(n + 1/2). For c > 0, the wavefunction describes decaying outgoing
QNM away from the maximum x = 0 to x = ±∞. This is analogous to the QNM in black
holes. When c < 0, we have growing incoming QNM moving towards the origin. This latter
case was obtained in [5].

5. Hyperbolic potentials

Potentials in cases 1 and 2 involve hyperbolic functions. A proper complexification of the
parameters in case 1 is

V (x) = −cd

2ν
tanh(

√
νx) sech(

√
νx) +

1

4ν
(ν2 + c2 − d2) sech2(

√
νx), (14)

where x ∈ (−∞,∞). Its normalizable counterpart is, according to the classification in
[15], the exactly solvable Scarf II potential. The special case where d = 0, which is
the inverted Pöschl–Teller potential, has been employed in [6] in their study of black
holes’ QNMs. We can easily obtain the wavefunctions and energies for the general
case, equation (14), from QES theory. The wavefunction has the form: ψn(x) =
(cosh

√
νx)(ic+ν)/2ν exp(id tan−1(sinh

√
νx)/2ν)χn(sinh

√
νx), and the corresponding energy

is

En = c2

4ν
−

(
n +

1

2

)2

ν − ic

(
n +

1

2

)
. (15)

Note that En is independent of d, which is a general feature of Scarf-type potentials. As in
case 5, the imaginary part is proportional to n + 1/2, which is the characteristic of black hole
QNMs. We mention here that there is another complexification scheme for case 1, giving a
singular potential which exhibits very peculiar features, such as the existence of continuous
bound states spectrum. As this is not related to QNM, it will be reported elsewhere [16].

Case 2 potential with QNM is

V (x) = −cd

2ν
coth(

√
νx) cosech (

√
νx) − 1

4ν
(ν2 + c2 + d2) cosech2(

√
νx), (16)
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where x ∈ (0,∞). Its normalizable counterpart is the generalized Pöschl–Teller potential
[15]. The wavefunction is ψn(x) = (sinh

√
νx)(ic+ν)/2ν(tanh(

√
νx/2))id/2νχn(cosh

√
νx). The

energies are exactly given by equation (15). The two cases share the same QNM spectrum,
despite the difference in the forms of the potentials and wavefunctions. This is not surprising,
as it only reflects the same relation between the two counterpart potentials, the Scarf II and
the generalized Pöschl–Teller potential (see e.g., table 1 in [15]).

To summarize, we have demonstrated that it is possible to extend the usual QES theory
to accommodate QNM solutions, by complexifying certain parameters defining the QES
potentials. We found that the five sl(2)-based QES systems listed in [9] can be so extended.
While one of these cases admits QES QNM, the other four cases give exact QNM solutions.
It is hoped that our work will motivate the search of many more exact/quasi-exact systems of
QNM in QES theories based on higher Lie algebras, and in higher dimensions.
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